Carnegie Mellon University

School of Computer Science

KEYWORDS — Parallel Data Structures, Synchronizations

|. INTRODUCTION

The Adaptive Radix Tree (ART) is an efficient in-memory index data structure
on modern architectures that beats read-only search trees on lookup perfor-
mance while at the same time supporting insertion and deletion [1,2] We im-
plemented three synchronization protocols for the Adaptive Radix Tree and
compared their performance under low and high contention. Our results
showed that the optimistic lock coupling approach scales better than the
fine-grained lock coupling and the coarse-grained lock approach under
both writer-only low contention scenarios and mixed writer and reader
high contention scenarios.

0f2]3 255

Nodel6 key child pointer

e N7
0 1 2 15

0f2]3]- [255

Node48 child index child pointer d|g|t 1
Vs 0 1 > 3 ““‘.--255\/““_2)..-...-] -s.,..-.-...-.2 e \
. NS g R A
e, *, “,‘4| sdee
digit 2
N R
Node256 child pointer

= . [) _» digit 3
| S [?/ T \iY E T

Y v \

A AA A (AND) CANT) CANY) UARE) CART) leaf nodes

(b) Adaptive-sized node in ART

(a) Four different node types

Figure 1: ART with adaptive node representations (adopted from [1])
Il. APPROACH: OPTIMISITIC LOCK COUPLING

Instead of preventing concurrent modification, we optimistically assume that
there will be no concurrent modification and later use version counters to
check if we need to restart the operation.

| version (bit 63-2) | lock (bit 1) | obsolete (bit 0) |

Listing 1: Internal layout of the optimistic lock.

When a writer is done with their operations, the unlock operation will clear the
lock flag and increment the version counter. If a node is to be discarded from
the tree by the writer, the obsolete flag will be marked. Optimistic lock works

differently on readers. Readers, however, do not acquire or release the lock.

Instead, before reading a node, the reader waits for the lock to be free and gets
the current version of the counter. This version is kept during the operation and

Building a Concurrent Adaptive Radix Tree

will later be checked against the latest version from the lock. If the two versions
are not matched, the operation will restart.

bool LookupOLC(parent,node,key, void InsertOLC(parent,node,key, leaf,depth,
depth,parent version) { p_version,old key) {
// <OLC> node version = TryLockShared(node);
version = TrylLockShared(node); if (p !'= node->prefix.size()) {
TryUnlockShared(parent, parent version); // prefix does not match
TryUpgradeExclusive(parent,p version);

// common prefixes length TryUpgradeExclusive(node,node version,

p = node->PrefixMatches(key, depth); parent);

if (p !'= node->prefix.size()) { inner = MakeInner(&node->prefix, p);
// prefix does not match leaf key = key[depth+p];
// <OLC> inner key = node->prefix[p];

TryUnlockShared(node, node version); UnlockExclusive(inner);
return false; InsertChild(node, leaf key, leaf);
} InsertChild(node, inner_key, inner);

depth += p; InsertChild(parent, old key, node);
if (IsLeaf(node)) { UnlockExclusive(parent);

// <OLC> return;

TryUnlockShared(node, node version); }

return true; if (IsLeaf(node)) {
} TryUpgradeExclusive(node,node version);
CheckOrRestart(node, node version); TryUnlockShared(parent,p version,node);
next = GetChild(node, key[depth]); Replace(node, leaf);
if (next == nullptr) { UnlockExclusive(node);

// not found return;

// <OLC> }

TryUnlockShared(node, node version); depth += p;

return false; next = GetChild(node, key[depth]);

} // <OLC>
return LookupOLC(node, next,key, CheckOrRestart(node, node version);
depth+1,node version); if (next == nullptr) {
} // If a grow needs to happen, we

// will replace "node , mark the
// old one as obsolete.
GrowInsert(node, leaf, depth);
UnlockExclusive(parent);
return;
}
TryUnlockShared(parent,p version);
InsertOLC(node, next, key, leaf, depth+l);

(a) Lookup (b) Insert

Figure 2: Pseudo code for lookup/insert operation synchronized using optimistic
lock coupling.

[1l. RESULTS

Yuchen Liang, Hang Shu

00000000000000

00000000000000

(a) Time constrained (10 seconds) scal- (b) Time constrained (10 seconds) scal-
ability for write-only workload ability for mixed workload

@® coarse grained @ lock coupling optimistic lock coupling

8000000
6000000
g 4000000

S 2000000

0

0 2 4 6 8

Figure 4: Time constrained (10 seconds) scalability for read-only workload

V. KEY TAKEAWAYS

% time Function
22.97 _Sp _counted base<(gnu cxx:: Lock policy)2>:: M release()
22.97 | Sp _counted base<(gnu cxx:: Lock policy)2>:: M add ref copy()
5.66 PrefixMatches(...)
2.23 OptimisticRWLock: :AwaitUnlocked(unsigned long&)

To evaluate the performance of our concurrent ART implementation, we use
operations per second as a measure of throughput, where an operation is
counted by the completion of a single insert or contains call. We used integer
keys for evaluation and ran our experiment on the GHC machines with varying
thread counts. For the writes-only and reads-only experiments, the keys were
generated with a uniform distribution such that accesses into the tree would
have low contention. For the mixed experiment, the keys were generated with a
Zipfian (skewed) distribution such that accesses into the tree would have high
contention.

15-418 PARALLEL COMPUTER ARCHITECTURE AND PROGRAMMING

Table 1: Time spent in various functions for optimistic lock coupling with 8 read-
ers in the problem-constrained experiment (gprof results)

% time Function
5.43 PrefixMatches(...)
2.36 std:: shared mutex pthread::lock shared()
2.36 |std:: shared mutex pthread::unlock shared()

Table 2: Time spent in various functions for lock coupling with 8 readers in the
problem-constrained experiment (gprof results)

The use of shared pointers is a bottleneck in our implementation of optimistic
lock coupling as most of the time spent by OLC is done in accessing/updating a
shared pointer’s reference count.

REFERENCES

[1] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive radix
tree: ARTful indexing for main-memory databases. In 2013 IEEE 29th Interna-
tional Conference on Data Engineering (ICDE), 2013. 38-49.

[2] Viktor Leis, Florian Scheibner, Alfons Kemper, and Thomas Neumann. 2016.
The ART of practical synchronization. In Proceedings of the 12th International
Workshop on Data Management on New Hardware, 2016. 1-8.

https://yliang412.github.io/cart/

{yuchenl3,hangshu}@andrew.cmu.edu

	Introduction
	Approach: Optimisitic Lock Coupling
	Results
	Key takeaways
	References

