
Project Proposal
Authors: Yuchen Liang (yuchenl3) and Hang Shu (hangshu)

URL to project homepage: https://yliang412.github.io/cart

Proposal PDF: https://yliang412.github.io/cart/files/proposal.pdf

Summary

We are aiming at implementing an efficient concurrent Adaptive Radix Tree (ART) in Rust. ART is
one of the most performant main-memory index data structure on modern architecture that
beats read-only search trees on lookup performance while at the same time support insertion
and deletion. We are interested in exploring and implementing one of the two synchronization
techniques described by the authors, namely optimistic lock coupling and read-optimized write
exclusion.

Background

On a parallel architecture, it is critical to has an efficient synchronization approach so that the
performance of the data structure scales with the number of processors. It is obvious that
holding a mutex over the entire data structure is not the solution as it would serialize all
operations and greatly limit throughput of the system.

For a tree-like data structure, finer-grained locking is a traditional synchronization approach
that is relatively easy to implement. For instance, on a B+ Tree, one would have a reader-writer
lock for each of the tree node locking the entire subtree. However, this approach does not scale
well due to the overhead of acquiring and releasing locks on modern architecture. Lock-free
data structures (e.g. skiplist), on the other hand, uses atomic operations to allow multiple
threads to access and modify the underlying content without waiting for a lock. Compare to
finer-grain locking, designing a completely lock-free data structure is more difficult and needs
additional indirections.

We are interested in exploring the two synchronization approaches that balance between
scalablity and ease of use. The first approach is optimistic lock coupling. Instead of directly
taking a lock in the traversal, one would optimistically assume there are no concurrent
modification and detect conflict by version counters. The operation would restart if a conflict is

https://yliang412.github.io/cart
https://yliang412.github.io/cart/files/proposal.pdf
https://db.in.tum.de/~leis/papers/ART.pdf


detected, but in the common case, this approach can improve performance by avoiding
unnecessary cache misses due to locking.

The second and more interesting approach is read-optimized write exclusion. This approach
gurantees reads will never block or restart. In this scheme, a writer takes a lock to block other
writers while a reader never acquire any locks. Reader-writer exclusion is instead provided by
using atomic operations to access and modify internal data structures.

In addition to exploring these synchronization approaches, we are also interested in providing
an efficient ART implementation for the Rust ecosystem while surveying the current language
and library support for designing concurrent data structures.

Challenges

The most challenging part of making ART concurrent is that we want to the performance to
scale while supporting both read and write operations at the same time. We will make
extensive use of synchronization primitives and atomics to gurantee the integrity of the data
structure while maintain high performance.

Concurrent data structure debugging and testing

Handling and debugging data races and deadlocks can be very tricky in a concurrent setting. It
is even more difficult to verify the correctness of the data structure. We think Rust's ownership
system might help us with this, but will still be quite challenging considering we will likely touch
unsafe Rust.

Garbage Collection

In a concurrent setting, the memory of a deleted node cannot be immediately reclaimed
because other readers might still be active. Therefore, we want to defer memory reclaimation
until it is safe to do so. Unlike Java and other GC-based languages, where the language runtime
takes care of the memory reclamation, garbage collection in Rust need to be handled by the
programmers. Luckily, there are libraries in Rust that implements a epoch-based or simliar
reclaimation scheme that could help us with this task.



Resources

We will base our implementation heavily on the original paper1 describing the data structure

and the follow-up paper2 parallelizing the data structure. We are likely to implement garbage
collection with the help of the crossbeam-epoch or the seize crate.

1 V. Leis, et al., The Adaptive Radix Tree: ARTful Indexing for Main-Memory Databases, in ICDE, 2013.
https://db.in.tum.de/~leis/papers/ART.pdf

2 V. Leis, et al., The ART of Practical Synchronization, in DaMoN, 2016.
https://db.in.tum.de/~leis/papers/artsync.pdf

Goals and Deliverables

75% Goals

Related works reading. Understand the ART data structure and the synchronization
approaches described in the papers.
Sequential implementation of ART. Implement a version of ART with no
synchronization. This version will help us understand the data structure better while
serving as a reference to compare against.
Concurrent implementation of ART using lock coupling (LC). As shown in the paper,
the code structure for lock coupling and optimistic lock coupling are very similar. The LC
implementation of ART will also serve as an alternative synchronization approach to
compare against with.
Extensive testing on implemented sequential and concurrent ART implementations.

100% Goals

75% Goals, plus:

Scalability analysis. We will run microbenchmarks to investigate the scaliability of each
finished implementations under low contention.
Contention analysis. We will run microbenchmarks to measure the performance of each
finished implementations when there are simulantaneous read and write operations.
Concurrent implementation of ART using optimistic lock coupling (OLC). Modify the
LC version to do OLC.
Benchmark against other concurrent data structures in Rust. Our goal is to have
comparable performance to both unordered and ordered concurrent data structures

https://docs.rs/crossbeam-epoch/latest/crossbeam_epoch/
https://docs.rs/seize/latest/seize/
https://db.in.tum.de/~leis/papers/ART.pdf
https://db.in.tum.de/~leis/papers/artsync.pdf


(dashmap, crossbeam-skiplist).

125% Goals

100% Goals, plus:

Concurrent implementation of ART using read-optimized write exclusion (ROWEX).
The ROWEX synchronization approach should further improve read performance since a
read will not wait or restart in this scheme.
Run YCSB benchmark. In addtion to the microbenchmarks, it might be beneficial to
evaluate the performance on a synthetic workload. YCSB is common set of workloads for
evaluating the performance of different key-value stores, which fits our scope. We might
need to adapt this benchmark into Rust since the workload generators and clients are
written in Java.
SIMD optimizations. SIMD-based parallel comparison can be used to further improve
lookup performance.

Demo

A test workload will be ran on the sequential and parallel versions of our ART implementation,
and we will specifically be looking at the speedup of the parallel versions for an increasing
thread count. Our poster will also show speedup graphs on our ART implementation.

Analysis

We will be comparing speedup of our parallel implementation to the our sequential
implementation. We are also interested in seeing the performance difference between
tradational lock coupling, and optimistic lock coupling. If time permits, we will be adding in
read-optimized write exclusion for comparison between the parallel implementations.

Platform Choice

We will do development locally on our own laptop but will use the GHC and PSC machines for
testing concurrency and doing benchmark experiments on performance with a higher number
of cores.

https://docs.rs/dashmap/latest/dashmap/
https://docs.rs/crossbeam-skiplist/latest/crossbeam_skiplist/


Schedule

Week Work Item Status

03/25 - 03/31 Related work reading

04/01 - 04/07 Sequential implementation

04/08 - 04/14 LC implementation + Microbenchmark setup

04/15 - 04/21 OLC implementation

04/22 - 04/28 Evaluation + Optimizations

04/29 - 05/05 Benchmarking + Final Report

05/06 Poster Session


